M3 – Mathematics for Computer Science Module 5

2022 Scheme Mathematics for Computer Science BCS301 Module 5 Notes (Download👇) BCS301 Module 5 Design of Experiments & ANOVA Module 5 Design of Experiments & ANOVA – Principles of experimentation in design, Analysis of completely randomized design, randomized block design. The ANOVA Technique, Basic Principle of ANOVA, One-way

M3 – Mathematics for Computer Science Module 4

2022 Scheme Mathematics for Computer Science BCS301 Module 4 Notes (Download👇) BCS301 Module 4 Statistical Inference 2 Module 4 Statistical Inference 2 – Sampling variables, central limit theorem and confidences limit for unknown mean. Test of Significance for means of two small samples, students ‘t’ distribution, Chi-square distribution as a test of goodness of fit. F-Distribution.

M3 – Mathematics for Computer Science Module 3

2022 Scheme Mathematics for Computer Science BCS301 Module 3 Notes (Download👇) BCS301 Module 3 3 Statistical Inference 1 Module 3 Statistical Inference 1 – Introduction, sampling distribution, standard error, testing of hypothesis, levels of significance, test of significances, confidence limits, simple sampling of attributes, test of significance forlarge samples, comparison of large samples.

M3 – Mathematics for Computer Science Module 2

2022 Scheme Mathematics for Computer Science BCS301 Module 2 Notes (Download👇) BCS301 Module 2 Joint probability distribution & Markov Chain Module 2 Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance and correlation. Markov Chain: Introduction to Stochastic Process, Probability Vectors, Stochastic matrices,Regular stochastic matrices, Markov chains, Higher transition probabilities, Stationarydistribution of Regular Markov … Read more